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Abetract 

This work represents the culmination of several years of study of an operating large energy storage battery with the purpose of determining 
if computerized pattern recognition of maintenance data (and/or available fabrication data) could be used for the early detection of puorly 
performing cells. Also investigated was the possible identification of cells with predicted high performance. Previous studies using k-nearest 
neighbor pattern recognition have been augmented with the investigation of artificial neural network analysis. Both methods have achieved 
practical levels of prediction, but the neural network prediction results are somewhat better, it was possible to select 70% of the high-performing 
cells, without any false selections from the low-performing cells; it was possible to identify nearly 96% of the poor-performance cells, with 
none of the high-performance cells mis-selected. These results suggest the feasibility of the routine application of neural networks for 
performance prediction as part of a maintenance strategy for long-string energy storage systems. 
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1. Introduction 

The use of large lead/acid energy storage batteries con- 
sisting of hundreds to thousands of cells has been under study 
as one possible solution for electric power (utility) load man- 
agement [ 1 ]. It is desirable that all cells of a battery have a 
similar (high) capacity rating to prevent low capacity cells 
from going into reversal [2]. (Cell reversal is the state in 
which the electrodes reverse polarity during deep discharge, 
leading to heating, gassing, and possible irreversible dam- 
age.) Hence, it would be beneficial to identify low and high 
performing cells in advance so that they could be segregated 
to improve the performance of the battery. Previous studies 
[3-13] have concerned themselves with identifying these 
groups of ceils by applying the pattern recognition techniques 
of k-nearest neighbor and non-linear mapping to battery fab- 
rication and maintenance data. Although the results of these 
studies were encouraging, they were still inadequate for real- 
istic applications. Prediction for the performance of the cells 
had an overall classification accuracy at best of 73.8% using 
non-uniform conditions for training and test sets. 

The approach used in this study was to determine ifa neural 
network could produce classification accuracies superior to 
what were achieved in any of the previous studies [9-13], 
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examining easily acquired battery maintenance events. The 
goal was to achieve classifications such that greater than 90% 
of the poor performing cells could be removed from the 
battery, or that greater than 90% of the high performing cells 
could be selected. The features and neural network parame- 
ters that help achieve this goal might provide the ability to 
select cells for creating a consistently high performance bat- 
tory with a low possibility of cell reversals, and also might 
prove instructive as to the physical/chemical properties of 
low and high performing cells. 

L I. Description of  the battery system 

This study concerns itself with a lead/acid battery manu- 
factured by GNB, Inc., Kankakee, IL, in June 1983. The 324- 
cell battery, fabricated according to the Electric Power 
Research Institute (EPRI) specifications, was capable of 
delivering 500 kW for a 1 -h discharge ( 1040 Ah cell capacity 
limit) or 1.2 MWh for a 5-h discharge (2080 Ah cell capacity 
limit) [3]. The 340 cells produced for this battery were 
fabricated and tested in five batches: four batches of 80 cells 
each and a fifth batch of 20 cells. Each cell was numbered 
with the batches labeled 'circuits' 1 through 5. Detailed 
records of fabrication materials and measurements were made 
for each cell. After completion of the initial acceptance tests, 
the battery was installed (in December 1983) at the Battery 
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Energy Storage Test (BEST) facility in Newark, NJ, in 54 
six-cell modules (comprising 324 of the 340 manufactured 
cells). The performance of over 200 charge/discharge cycles 
was observed at the BEST facility. Then, in July 1987, the 
battery was installed at Crescent Electric Membership Cor- 
poration (CEMC), Statesville, NC, an area electric power 
distributor. It has since been operated as a peak-shaving 
energy storage system at a maximum discharge of 500 kW 
for I h and a minimum discharge of 200 kW for 3 h. 

Quarterly maintenance data have been recorded for the 
GNB battery since being installed at CEMC in 1987. Statis- 
tically representative sets of cells were chosen for capacity 
tests conducted in March 1989 (109 cells) and April 1990 
(121 cells). Then, in September 1991, capacity tests were 
performed on all 324 cells. The GNB battery was still oper- 
ating at CEMC at the time of completion of the study reported 
here (May 1995), without any significant number of cell 
failures. No further capacity data have been obtained since 
the 1991 study. 

1.2. Previous studies predicting and modeling cell 
performance 

The idea of using manufacturer's pre-test results for pre- 
dicting cell lifetime was first investigated for nickel-cad- 
mium cells using statistical analysis, cluster analysis, and 
multi-variate pattern recognition techniques [ 14]. Later, this 
type of inquiry was extended to lead/acid cells [4-6]. 
Encouraging results from these studies laid the foundation 
for extensive investigations into the GNB battery, using these 
same techniques as applied to fabrication and routine main- 
tenance data, with the objective of cell performance predic- 
tion [6-12]. 

Using fabrication and routine maintenance data for pre- 
dicting cell performance was considered attractive by the first 
researchers for several reasons [ 12,14 ]. Using the fabrication 
data might allow one to group cells for specific functions at 
the outset [ 14]. If the initial manufacturer's test data were 
not available, then routine maintenance data might be used 
for the same predictive functions [ 12]. Routine maintenance 
data might also be used for performance prediction rather 
than periodically conducting expensive capacity tests [ I 1 ]. 

1.3. Prior investigations of  cell performance prediction for 
the GNB lead/acid battery 

The Perone and Spindler [4,6] study of initial fabrication 
and test data for lifetime classification analysis of lead/acid 
golf cart batteries laid the foundation for the fabrication and 
test plan specified by EPRI for the GNB battery [6]. Data 
have been collected and analyzed at every stage in the GNB 
battery's life [ 10-13]. Three separate studies endeavored to 
determine whether cell performance could be predicted using 
different components of these data. A first study [4-9] 
explored the use of the initial fabrication/test data. A second 
study investigated the use of routine maintenance data [ 10- 

12]. And a third study examined the use of fabrication/test 
and maintenance data together [ 13]. 

1.3.1. Studies of  battery fabrication/test data 
The fabrication/test data of the GNB battery were exam- 

ined for features that could predict cell performance [9], 
where cell capacity was the performance measure. The study 
consisted of two parts. The first part was to determine whether 
accurate classifications could be made with two classes (low 
and high performance cells). Accuracy was determined using 
leave-one-out k-nearest neighbor (KNN) analysis. An over- 
all accuracy of 92% was achieved on the training set (data 
for cells of known performance) using several different fea- 
ture sets. Non-linear mapping (NLM) was used to determine 
which feature sets, though providing accurate classifications, 
also produced the best separations in hyper-space. Those 
features giving good results with both KNN analysis and 
NLM were considered to contain classification information. 
A prediction set (data for cells of known performance, but 
not included in the training set) was not analyzed. 

In the second part of the study the cells were classified into 
three classes (high, low, and medium performance cells). 
The assumption was made that class divisions could be made 
based on data having a Gaussian distribution and classes were 
established with normalized mean and standard deviation 
units (the mean was set at zero and standard deviation was 
set at one). Cells with capacity greater than one standard 
deviation above the average were defined as a high perform- 
ance class; cells with capacity greater than one standard devi- 
ation below the average were defined as a low performance 
class; and cells with capacity within one standard deviation 
of the average were defined as a medium performance class. 
Because of this over-simplified class definition guideline 
some erroneous classifications were encountered. As a result, 
NLM was used to re-classify some cells. For the re-classified 
training set the overall training accuracy achieved with vari- 
ous combinations of features ranged from 78 to 86%. For the 
individual classes the highest accuracy was 92% for the low, 
8 ! % for the medium, and 85% for the high performance cells, 
As in the previous battery classification studies, the maximum 
classifications were achieved with different feature sets for 
each class. A suitable prediction set was not available at the 
time of Petesch's study [ 9], but this was evaluated later [ 13 ] 
(see below). 

Petesch [9] concluded that, through multi-variate analysis, 
one could extract from the initial fabrication data information 
related to cell performance even seven years after 
manufacture. 

1.3.2. Studies of  routine maintenance data 
The routine maintenance data were examined by Chen 

[10] and Perone and co-workers [11,12] for features that 
could predict cell performance. Like the fabrication/test 
study done by Petesch [9], Cben's study was also done with 
two classification schemes: classification into two classes 
(low and high) and three classes (low, medium, and high). 
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Table I 
Best performance prediction results with combined feature sets, KNN pattern recognition, nonlinear mapping-ol~imized class distributions [ 13] 

123 

Accuracy False % con'ect F , ~ "  
• (%) ~ Positive of selected 

Maintenance Fabrication 

a) Class ! 
91.7 6 64.7 Water level trend 

58.3 3 70.0 Cell voltage trend; 
specific gravity trend; 
average cell ; oltage over all events 

50.0 2 75.0 Cell voltage trend; 
average cell voltage over all events 

b) Class 2 
76.9 2 83.3 Water level trend 

84.6 3 78.6 Average water level over all events 

Dry weight; average specific gavity 
after disclmge, nmimum caggity 
tim five cycles 

Acid added dusting formation md 
before shipping 

Dry weight; acid added 
f ~  and before shipping 

weight; A ~  specific gravity 
after discharge; maximum capa~ 
from first five cycles 

Acid added during and before 
shipping (relative to total acid); 
average specific gravities beS)t= md 
after five test cycles; maximum 
capacity from first five cycles 

• Maintenance events, 1989; capacity test, 1990. 
b42 total ceils: 12 class i (high capacity); 13 class 2 (low capacity); 17 class 3 (ihtenn~iate). 

Class divisions were defined, as in Petesch's study, by nor- 
malized standard deviations. Chon's study demonstrated the 
predictive power of the maintenance data using non-lradi- 
tional data indexing. Several indexes were tried, but a 'battery 
activity' index proved the most useful. This index was based 
on the total volume of water required to be added to the battery 
each quarter for one year prior to a capacity test. The amount 
of water required was determined to reflect the overall activity 
of the battery during a given quarter. A training set consisted 
of maintenance data collected for one-year prior to a given 
capacity test event. For the two-class training set, several 
features gave I00% overall accuracy. For the two-class pre- 
diction set, several sets of three to five features gave around 
80% overall accuracy. For the three-class training sets, the 
four best features gave 76%--88% overall accuracy with the 
high performance cells providing nearly 100% accuracy. 
However, no meaningful results were realized with the pre- 
diction set. 

1.3. 3. Studies of combined fabricationltest and maintenance 
data 

Though it was apparent that fabrication/test data and rou- 
tine maintenance data contained information useful in pre- 
dicting cell performance, individually, they were inadequate 
to make practical predictions when using ~he KNN and the 
HLM techniques. A study was, therefole, performed m 
explore the simultaneous use of the fabrication/test data set 
and the routine maintenance data. The results were presented 
byLi  [13]. 

Three classes were looked at in Li 's  study (low, medium, 
and high performance cells). Class boundaries were defined 

as before [9-12] by normalized standard deviations. KNN 
analysis was used for developing classification clusters, and 

was used for fine tuning the classifications. The leave- 
one-out ~ technique was used for determining classifi- 
cation r,~curacy. Two sets of training and prediction sets were 
created from the maintenance data as follows: 

Training set Prediction set 

Pdor 1o March 1989 Prior 1O April 1990 
Ce~ci.~ t~ t  Capacity test 
Prior Io April 1990 Prior to , ~ m b e r  1990 
Capacity test G~-i ty  

The combined fabrication/maintenance data yielded an 
overall prediction accuracy of C~0~. However, the major 
breakthrough came with the reworking of the three-class 
problem. That is, the three-class problem was redefined as a 
series of three two-class problems: low versus medium/high; 
medium versus low ! high, and high versus low/medium. This 
adaptation allowed higher individual classification accuracies 
to be achieved than was possible before on prediction sets. 
Maximum prediction accuracies were 85% for the low per- 
formance cells, 65% for the medium performance cells, and 
92% for the high performance cells. Different feature sets 
were optimum for each of the three prediction objectives. 

A more definitive evaluation of prediction ability must take 
into account the occurrences of false positives. When this 
factor is considered, the most effective prediction ~ocedures 
using the combined feature set established by Li 's  work ar~ 
smnmarized in Table 1. Note that several different results are 
provided. The 'best' choice depends upon specific objectives. 
For example, if the objective is m obtain a set of  high per- 
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forming cells with the fewest possible mistakes, the example 
in Table 1 where only 50% of class ! cells are identified 
would be the best choice, because the highest accuracy 
(75%) for the cells selected would be achieved. For class 2 
(low performing) cells, a large percentage (84.6%) could 
be identified, but nearly 12% of those selected would not be 
class 2 cells. 

From Li 's work [ 13], it was clear that the use of a feature 
set combining initial fabrication and recent maintenance data 
could predict cell performance at a high enough level of 
accuracy to merit consideration for practical management of 
long-string battery energy storage systems. However, the 
original objective of this work was to evaluate the effective- 
ness of maintenance data alone for performance prediction, 
because cell fabrication/test data are rarely available with the 
quality and detail provided for the GNB battery studied here. 
Thus, the work reported below considered only maintenance 
data. 

1.4. Neural networks for  cell performance prediction from 
maintenance data 

Routine battery maintenance data were evaluated for per- 
formance prediction, using artificial neural networks (ANN) 
as a pattern recognition tool. Because of the fundamental 
differences in ANN principles, and the ability to handle non- 
linear relationships, it was anticipated that significant 
improvement might be obtained compared with conventional 
pattern recognition methods. 

1.4.1. Introduction to neural networks 
A neural network is a mathematical modeling procedure 

originally thought of as mimicking the operation of neurons 
in the human brain [ 15]. Implemented on a computer, a 
neural network maps between two sets for purposes of clas- 
sifying, predicting, pattern recognition, or other specialized 
processing (such as signal analysis). A neural network gains 
its aptitude by encoding patterns into the activation levels of 
a system of parallel distributed information processors 
[ 16,17]. Most importantly, they 'learn' by exposure to exam- 
pies. This is one of the major advantages of using a neural 
network. That is, rather than devising complicated models, 
one presents the ~leural network with plentiful and represen- 
tative examples, :rod it will extract its own model [ 16,18]. 

Neural networks fall in the same category as other multi- 
variate techniques such as linear discriminant, KNN, machine 
learning, and statistical least-squares techniques [ 19]. How- 
ever, neural networks have more capabilities than any of the 
other techniques. They are nonlinear [20], provide more 
functional forms [ 20], and are nonparametric [ 15 ]. Because 
they are nonparametric, assumptions about the data fitting a 
particular density function are not made [ 19]. Thus, in cir- 
cumstances where theoretical, analytical, or numeric solu- 
tions are inadequate (e.g. the relationships between features 
are unknown), a neural network may be able to associate 

many obscurely interrelated variables into a usable multi- 
dimensional mapping [ 18,21 ]. 

1.4.2. Neural network architecture 
A neural network consists of a number of distinct layers 

each with various numbers of mathematical neurons (also 
known as processing elements, nodes, or units). The overall 
structure of a neural network is illustrated in Fig. 1 and an 
individual processing element is portrayed in Fig. 2. 

First, in neural network architecture, there is an input layer. 
The number of processing elements in this layer corresponds 
to the number of inputs. Each processing element in this layer 
receives only one input from outside of the network. Each 
node in the input layer fans out its input, without modification, 
to each processing element in the next [22]. Each transfer of 
output from one neuron to the input of another neuron is 

Input (Features) 

Input Layer 

Layer 1 
(Hidden) 

Layer 2 
(Hidden) 

Layer 3 
(Output) 

Output (Class) 
Fig. 1. Structure of a feed forward back propagation neural network con- 
sisting of three layers (the input layer is not counted). 

Inpu t s  in to  P roces s ing  E l e m e n t  
x~ 

x~ / x, 

ni~ x, ~x. 
O u t p u t  o m  o c e s s i n g  E e m e n t  

Fig. 2. Structure of an individual processing element. The inputs (x) are 
multiplied by weight factors (w). summed, transformed with a transfer 
function, and then distributed to other processing elements. 
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called a connection [23]. The next layer is called a hidden 
layer. There may be one or several hidden layers. Each proc- 
essing element in the firs~ hidden layer receives input from 
each input layer node. Each input in each processing element 
is multiplied by a separate weight factor. These products are 
then summed, scaled, and combined with a bias factor (Fig. 
2). The product of a scaling factor and a bias factor are then 
added. The internal activation is then fed through a transfer 
function (called a squashing function by some) that effects 
a nonlinear transformation. Two such functions commonly 
used in neural networks are the sigmoid function and the 
hyperbolic tangent function. 

The output from each node's transfer function is then sent 
to nodes in a successive hidden layer, or to the output layer 
if there are no more hidden layers. 

1.4.3. Neural network development 
There are three phases in neural network development. In 

the first phase the neural network is trained in a process called 
'supervised learning'. A training set of data is presented to 
the neural network causing the weights in each processing 
element, initially set to small random numbers, to be modified 
to minimize the difference between the actual outputs and the 
desired outputs. Desired outputs are defined to reflect the 
known true class of each item represented by each pattern. 
When an individual pattern is presented to the neural network 
this is called a 'training cycle'. When the network adjusts 
itself to minimize error this is termed an 'epoch'. An epoch 
may occur after only one or after many training cycles. 

In the second phase, the training set is taken through the 
trained network, but without the weights being adjusted. This 
'recall' phase compares the output values to the correct values 
of the training data allowing one to determine how well the 
neural network learned the training sct. Poor results mean 
either that the network has not been properly trained, or that 
there is a problem with the data. On the other hand, obtaining 
good results with the training set still does not necessarily 
mean that the network was properly trained. The network 
must be evaluated with a test set (prediction set). 

In the 'test' phase the network is presented with patterns 
(test or prediction set) of the same origin as the training set 
which were not encountered during training. This procedure 
determines how well the network can interpolate for patterns 
it has not seen before. These three phases are repeated numer- 
ous times with adjustments made to the neural network 
between each set of phases by the user to try to improve the 
performance for the next set of training, recall, and testing. 
Finally, after the netwurk's performance has met the desired 
criteria of success defined by the user, it is deployed with real 
world data where the outcomes are unknown. 

2. Experimental 

2.1. Hardware and software 

An IBM/PC compatible 486-DX2/66MHz computer with 
8 Mbyte RAM, 512 Kbyte SR,~M cache, and 550 Mbyte hard 

disk drive were used for development of the neural networks 
and database management. 

Excel® (version 5.0; Microsoft Corporation, Redmond, 
WA) was used to manage the databases. Management of the 
databases included importing files previously created using 
SYMPHONY T M  (Lotus Corporation, Cambridge, MA), 
reorganizing and editing the data, pre-processing of the data 
using mathematical and statistical functions, and exporting 
the data in a format compatible with the neural network soft- 
ware. The neural networks were developed using Neural- 
Works Professional U/PLUS (version 5.0; NeuralWare, Inc., 
Pittsburgh, PA). All software was executed under 
Windows T M  (version 3.11: Microsoft Corporation) with 
MS-DOS® (version 6.2; Microsoft Corporation). 

2.2. Raw database 

The raw database contained all of the unprocessed main- 
tenance data. This included quarterly maintenance task data 
(float voltages, specific gravities, water additions, and elec- 
trolyte levels) for each of the 324 cells from August 1987 
through September 1991 and the results of all of the capacity 
tests done in March 1989, April 1990, and September 1991. 
Capacity test data consisted of the results of capacity tests for 
109 cells from March 1989, 121 cells from April 1990, and 
323 cells from September 1991. 

2.3. Definition of  class boundaries 

Cell capacity, expressed as a percentage of the nominal 
value (2080 Ah), was the figure-of-merit used to distinguish 
how well a cell performed. The assumption was made that 
class divisions could be made based on their having a Gaus- 
sian distribution. Classes were established based on their ncf- 
malized mean and standard deviation units (the normalized 
mean was zero and standard deviation was one). Cells with 
capacity greater than one standard deviation above the aver- 
age were defined as a high performance clg~s (class 1); cells 
with capacity greater than one standard deviation below the 
average were defined as a low performance class (class 2), 
and cells with capacity within one standard deviation of the 
average were defined as a medium performance class (class 
3). Because there were many more members of class 3 than 
either of the other classes, class 3 cells represented in the data 
base were selected randomly, with the total number approx- 
imately equal to those of classes 1 or 2. A class assignment 
must be associated with each pattern in the feature database 
for supervised learning. 

2.4. Feature database 

The feature database was derived from the raw database 
and contained features which were hoped would prove useful 
in classifying the cells. These features included transforma- 
tions and combinations of the data values found in the raw 
database. For example, prior to a capacity test severalquarters 
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Table 2 
Time indexing of raw database using 'months until capacity test' 

Capacity test e v e n t  Maintenap*e event (tl) Maintenance event (t2) Maintenance event (is) Maintenance event (t4) 

May 1989 February 1989 November 1988 August 1988 February 1988 
April 1990 May 1990 November 1989 August 1989 May 1989 
September 1991 September 1991 March 1991 November 1990 August 1990 

Table 3 
Neural network input codes for capacity test event features 

Feature description Float voltage Specific gravity Water addition Elec,mlyte level 

t4 (see Table 1 ) 2 16 30 44 
t3 (see Table l) 3 17 31 45 
h (see Table I) 4 18 32 46 
tt (see Table 1) 5 19 33 47 
mean of (tl, t2, t3, t4) 6 20 34 48 
t, Xt2Xt3Xt4 7 21 35 49 
slope of (t,, re, t3, t4) 8 22 36 50 
correlation coefficient of (t~, t2, t3, t4) 9 23 37 51 
tl - t: 10 24 38 52 
t~ - t3 11 25 39 53 
t ,  - t,, 1 2  26 40 54 
t2-t3 13 27 41 55 
t2-t4 14 28 42 56 
f3 - -  t4 i 5 29 43 57 

of float voltage readings were taken for each cell. The com- 
bination of several float voltages, transformed through linear 
regression, form a slope and a correlation coefficient which 
may demonstrate a trend. The slope and correlation coeffi- 
cient would hence be elements in the feature database. 

The raw database was reorganized based on a time index 
relative to the capacity test dates. Four comparably time- 
spaced maintenance events during the year prior to a capacity 
test were identified for each capacity test date. Time-until- 
capacity-test was the index for each maintenance event and 
each index unit was designated 'tt, t2, t3, or t4', where t~ refers 
to the maintenance event closest in time to the capacity test 
date. Table 2 shows the time index used for maintenance 
events associated with each capacity test event. Note that in 
one case the maintenance event assigned to index tt occurred 
after the capacity test (April-May 1990). This is acceptable 
for purposes of  retrospective training and prediction, as there 
should be no change in capacity distribution by a maintenance 
event. Each maintenance event had associated with it the 
maintenance tasks of float voltages, specific gravities, water 
additions, and electrolyte levels. Additional features were 
also generated. These included combinations and relational 
transformations of  the time indexed features associated with 
each capacity test event from Table 2. A total of  56 features 
were established for each cell for each capacity test event. 
Table 3 defines these features and indicates their neural net- 
work input code number. Each of  the cells associated with a 
capacity test event in the feature database was assigned a 
class in the feature database. 

The feature database also contained class assignments 
associated with each pattern. During the training phase the 

class assignment data fields are used for supervised training. 
During the recall and test phases the class assignments are 
used to gauge the performance of  a neural network by com- 
paring the patterns' actual classes to the neural network's 
class assignment of them. Hence only data for those cells 
associated with a capacity test event were retained for the 
feature database. 

2.5. Data pre-processing 

Inherent to the raw data were major variations in magnitude 
and scale. This included variations from feature to feature, as 
well as from event to event. The incidental variations in scale 
were eliminated by transforming the features via normaliza- 
tion according to Eq. ( ! )  

( XNj)i= (Xj)i/ (Xmean)j (1) 

where for thejth feature of  the ith cell, (XNj)~ is the normal- 
ized value of  the raw data (Xj)~. (X~.~)j  is the mean value 
of  the jth feature for all cells of a particular maintenance 
event. This form of normalizatioit retains the relative differ- 
ences in ranges, which can be useful for transformed features 
which define trends over several events. 

When pattern recognition methods are applied, however, 
it is desired to eliminate completely the confounding effects 
of varying magnitudes of standard deviations between 
features. Thus, each feature was autoscaled according to 
Eq. (2) 

(xsj), = [ (xdvj) , -  (x~,~. ) j ] / (XJVSD)j  (2) 
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om~,w ~ ~tw.md ~ ~ mm~rd O,~tm Uah) 
Hg. 3. Distribution of cap~i~ ~ong t~  cells ~ ~MC ~ m  ~ combm~ 19~, l ~ ,  ~ 1~1 capaci~ t ~ .  

where for thejth feature of the ith cell, (XSj)~ is the autosca!ed 
value of the normalized data (XNj)~ generated in Eq. ~ 1). 
The normalized mean value, (XNn~)~, is from Eq. ( 1 ), and 
(XNSD)~ is the sample standard deviation of the normalized 

jth feature for all cells of a particular maintenance event. 

2.6. Training and test sets 

The choice of a training set is probably the most important 
aspect for success of a neural network project. Unlike clas- 
sical statistical methods in which the number of samples 
necessary to obtain statistically significant results can be 
determined, with neural networks this number can only be 
estimated [24]. Typically the training set needs hundreds to 
thousands of examples so that an adequate number of patterns 
can be represented and learned [ 21,25,26 ]. In many instances 
the number of examples required is dependent upon the type 
of data. For example, a small data set can be justified as long 
as the training data set is relatively free of noisy data or 
idiosyncratic examples. The fewer the number of cases in the 
training set the less eccentricity is acceptable [27]. In this 
way the data are more uniform and less susceptible to outlier 
patterns disrupting the learning process. 

Generally, all of the data are combined and split with 75- 
80% of the combined data forming the training set and the 
remaining 20-25% forming the test set [28]. In our study, 
all feature sets for each cell monitored in the three capacity 
test events were combined and their order randomized. (This 
was a significant procedural departure from our previous 

studies of the GNB battery data [9-16] .) For the training set 
the first 75% of the combined and randomized data was cho- 
sen. The test set comprised the remaining 25% of the data. 
This produced a large enough training set to justify the use 
of a neural network. The randomization oftbe events between 
! 989,1990, and 1991 provided a foundation for a generalized 
extrapolation of the results over time. Fig. 3 illustrates the 
Gaussian-like distribution of the combined capacities nor- 
malized and autoscaled. 

2.7. Feature selection 

For neural networks, highly correlated input features are 
not troublesome [29]. However, as with statistical methods, 
deletion of variables with insignificant consequence on the 
output improves the effectiveness of the modeling [30]. 
Hence it is advantageous to reduce the number of inputs to 
optimize neural network performance. 

If the weights associated with a particular input node are 
all small then that input, relative to the other inputs, has little 
impact on the solution obtained by the network [31]. A 
Hinton diagram [32] allows one to determine which inputs 
have relatively little impact, by portraying an x-y  matrix of 
rectangular boxes, representing all intersections of nodes in 
the network. The magnitudes of weight-connecting nodes are 
indicated by the size and color of each rectangular box. Fea- 
ture selection can be done by training a neural network to a 
satisfactory level with the input of many features, examining 
the Hinton diagram, and then eliminating those features asso- 
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ciated with inputs that add little to the solution. The network 
is then re-trained with the remaining features. The elimination 
process is repeated until the performance of the neural net- 
work begins to deteriorate. In this way the strongest features 
are retained and the performance of the network can be 
optimized. 

2.8. Measuring neural network performance 

In order to judge the performance of a neural network one 
must be able to quantify its performance such that it can be 
compared with other neural networks and other classification 
techniques. Calculating classification accuracies, construct- 
ing confusion matrices, and determining risk factors are tools 
that provide different types of information about the classi- 
fication performance of a classifier. Taken together they form 
a good picture of a classifier's capabilities. 

2.8.1. Classification accuracy 
A classification accuracy quantifies how well a classifier 

correctly identifies the actual class. It can be calculated either 
as an overall accuracy or as a class specific accuracy 

Overall classification accuracy = ( C / J )  100% (3) 

Class specific classification accuracy = (CM/JM) 100% (4) 

where C, is the total number of correct classifications in the 
whole set of J patterns, and CM is the number of correctly 
classified cases of class M containing JM patterns. 

2.8.2. Confusion matrix 
A more powerful tool for evaluating the performance of a 

classifier is a confusion matrix. A confusion matrix provides 
much more information than the classification accuracies of 
Eqs. (3) and (4) because it not only conveys the percentages 
of correct classifications but also the types and percentages 
of mis-classifications. A confusion matrix is a table consisting 
of column headers indicating the true class assignments and 
row labels indicating the neural network class assignments. 
At the intersection of a row and column is the percentage of 
cases of a particular class that the neural network assigned to 
the class corresponding to that row. In the diagonal running 
from top left to bottom right are the class specific classifica- 
tion accuracies of Eq. (4). The other positions on the table 
indicate false positives. For example, Table 4 depicts a con- 
fusion matrix in which 86% of true class 1 cases were cor- 
rectly classified, but 7% of the class 2 cases and 22% of the 
class 3 cases were mis-classified as class i. Ideally then, i fa  
neural network classified all of the cases correctly, there 
would be 100's running in a diagonal from top left to bottom 
right of the table with zeros everywhere else 

3. Results and  discussion 

3.1. Preliminary investigation 

Preliminary experiments established some fundamental 
neural network parameters which appeared to work best for 

Table 4 
Example of a three-class confusion matrix ~ 

Neural network True class 
identified class 

Class 1 Class 2 Class 3 

Class i 86 7 22 
Class 2 4 90 3 
Class 3 10 3 75 

"Values sign;Yy the percentages of cases oftbe class indicated by the column 
that were classified by the neural network as belonging to the class indicated 
by the row. 

the battery data sets. These parameters were: (i) 'extended 
delta-bar-delta' learning rule [33]; (ii) hyperbolic tangent 
transfer function [34] for hidden nodes; (iii) the Neural- 
Ware® 'softmax output' transfer function [ 35] for output 
layer nodes, and (iv) input scaling between [ - 1, + 1 ]. 

In the first round of the feature selection procedure all 56 
of the features were input into a set of ten neural networks, 
each with a single hidden layer containing from one to ten 
hidden nodes. To gauge each neural network's performance, 
the test set's overall classification accuracy as well as class- 
specific accuracy were monitored. The training set's classi- 
fication accuracies were useful only as confirmation that the 
test set's results were not fortuitous. The primary objective 
was to achieve the highest possible accuracies for classes 1 
and 2, with the lowest confusion among these two classes. 
The Hinton diagram was used to eliminate the weaker fea- 
tures. At various points in the feature selection process, the 
stronger of the features which had previously been eliminated 
were reintroduced to see their effect. This cycle of feature 
reduction was repeated several times until a point was reached 
where deterioration of overall classification accuracy for the 
test set began to occur when additional features were 
eliminated. 

As a result of the feature selection investigation, the single- 
hidden-layer neural networks with one hidden node proved 
to be adequate, with more hidden nodes not improving the 
overall classification accuracy. The neural network input 
codes for i 3 features which appeared most significant were 
2, 5, 6, 7, 10, 14, 17, 20, 21, 30, 41, 42, and 43 (see Table 
3). Of these, input codes 2, 5, 6, 7, 10, 14, and 17 stood out 
as more important than input codes 20, 21, 30, 41, 42, and 
43. An examination of Table 3 reveals that of the eight most 
important of the selected features, seven derive from the float 
voltages (input codes 2, 5, 6, 7, 10, and 14) and the other is 
the specific gravity feature t3 (input code 17). The least 
important selected features all derive from the water added 
maintenance task. None of the selected features were derived 
from the electrolyte level maintenance task. The reasons for 
the relative importance of the features will be discussed later. 

3.2. Neural network optimization 

The other aspects of optimized neural network design to 
be explored included: the overall architecture (number of 
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~-~ t Input Layer ( 1 3 ~ e s ~  

Fig. 4. Architecture determined to produce the best performing neural net- 
works for this study. 

hidden layers, number of hidden nodes within hidden layers, 
and their interconnections); variations in epoch length, and 
the input scaling ranges. A systematic study was conducted 
to optimize the basic architecture. The number of hidden 
layers was varied from one to three, with the number of nodes 
in each varying from one to four. Connections between layers 
were tried with only adjacent layers connected and with prior 
layers feeding into some or all subsequent layers. The out- 
come of this investigation yielded an architecture, depicted 
in Fig. 4, that produced promising results. The inputs were 
the selected features described earlier. The bias was input to 
all nodes in all layers. There were three hidden layers. The 
first hidden layer consisted of three nodes with inputs from 
all of the input layer nodes except nodes 20 and 21 (see Table 
3). The second hidden layer consisted of three hidden nodes 
with inputs from the first hidden layer and all nodes in the 

Table 5 

input layer. The third hidden layer consisted of one node with 
inputs from all nodes in the input layer, and the first and 
second hidden layers. Each bidden layer node used the hyper- 
bolic tangent transfer function. The output layer consisted of 
three nodes with the only input to each being from the third 
hidden layer node (and the bias). 

Having an adequate architecture in hand, the neural net- 
work performance was fine tuned by systematically investi- 
gating the epoch size and input scaling ranges. Epochs were 
varied from 5 to 175 training cycles. Input ranges had the 
form of [ - 1, + 1 ] or [0, 1 ] in which ranges within these 
forms included such variations as [ -0 .8 ,  +0.8] and [0.2, 
0.8]. Variations of these parameters produced neural net- 
works that were more specialized in their abilities and are 
discussed later. 

3.3. Three-class optimization 

Since the problem was defined in terms of three classes 
(high (class 1), low (class 2), and medium (class 3) per- 
formance), the mo~t straightforward approach was to create 
a three-class optimized neural network. However, since not 
all classifications and mis-classificafions have the same sig- 
nificance, the neural network's confusion matrices must be 
interpreted with this in mind. Table 5 presents the confusion 
matrices for several neural networks that produced the best 
classifications for three-class optimization. 

Inspection of the confusion matrices in Table 5 reve~s that 
the manner in which mis-classificatious occurred was not by 
chance, but that the neural networks were actually finding 
decision regions based on the input patterns. Classes ! and 2 
were separated from one another more than either were from 

Selected confusion matrices (percent classified), overall percent classification accuracies for 3-class neural network test and training sets" 

NNID b PC c Test set Training set 
Confusion matnx (%) Confusion matrix (%) 
True class True class 

Class ! Class 2 Class 3 OCA d Class 1 Class 2 Class 3 OCA d 

2 I 75.0 0.0 2 I. 1 77.4 88.2 3.0 27.7 72.0 
2 0.0 95.7 2 I. I 0.0 84.9 26.2 
3 25.0 4.3 57.8 ! 1.8 12.1 46. ! 

3 I 80.0 0.0 2 I. I 77.4 94. ! 6. i 27.7 74.7 
2 0.0 91.3 21.1 0.0 84.8 2;3.1 
3 20.0 8.7 57.8 5.9 9. ! 49.2 

4 I 80.0 4.3 21. I 79.0 88.2 7.6 35.4 69.? 
2 0.0 95.7 21.1 0.0 83.3 24,6 
3 20.0 0.0 57.8 I ! .8 9. I 40.0 

7 I 100 8.7 31.6 80.6 100 9.1 49.2 68.1 
2 0 87.0 15.8 0 83.3 23.1 
3 0 4.4 52.6 0 7.6 27.7 

• Neural network pasameters: (2) 14900 training cycles, epoch = 65, [ - 0.95, + 0.95] input scaling; (3) 15100 training cycles, epoch=51, [ - I, + I ] input 
scaling; (4) 9300 training cycles, epoch ~ 50, [ - 1.2, + 1.2] input scaling; (7) 9300 training cycles, epoch = 25, [ - 0.9, + 0.9] input scaling. 
b NN ID: Neural network identification. 
c PC: Neural network predicted class. 

OCA: Overall classification accuracy. 
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class 3 as indicated by the percentages of mis-classifications. 
That is, most mis-classifications occurr,..d between class 3 
and the other classes. 

Examining the confusion matrices and overall percentclas- 
sification accuracies in Table 5 reveals that the training set 
typically had lower values than the test set. This is due to the 
NeuralWorks Professional I I /PLUS® 'Save Best' function, 
which uses the performance of  the test set and not the training 
set as the criterion for saving the neural network to disk. At 
a certain number of  training cycles over-training begins to 
occur: the test set's results become poorer as the training set's 
results begin to improve. In general, to have confidence in 
the overall performance of a neural network on unknown 
patterns, it is necessary for the training set to have comparable 
or better results than the test set. Neural network 3 in Table 
5 meets this criterion the best. 

3.4. Two-class optimization 

An alternative classification approach involving a two- 
class distribution, originally studied by Li [ 13], was also 
explored for neural network analysis. This consisted of break- 
ing the overall classification problem into two. For one prob- 
lem, class I cells were to be separated from a class consisting 
of  both class 2 and class 3 cells. The other problem was to 
separate class 2 cells from a class consisting of both class 1 
and class 3 cells. 

The same architecture and inputs as used in the three-class 
optimization were used in these experiments. However, the 
output layer only consisted of one node, since this is all that 
is required in a two-class problem. 

3.4.1. Class I versus classes 2 and 3 
The results from this study exhibited a correlation between 

high classification accuracy for class 1 and the number of 
mis-classifications from classes 2 and 3. This was the same 
trend observed for the three-class study. The difference here 
is that information is lost regarding what cells are being mis- 

classified as class 1. In the three-class evaluation relatively 
high amounts of mis-classifications by the other two classes 
as class I may be acceptable if, for example, the amount of 
class 2 cells identified as class 1 is very small. However, by 
grouping class 2 and 3 together, the origins of  the mis-clas- 
sifications are unknown making the results less informative 
than those from the three-class study. 

3.4.2. Class 2 versus classes I and3  
The results of this evaluation were more promising than 

the preceding study. Table 6 presents the results of the two 
best neural networks. For neural network number 14 poten- 
tially 92.3% of the class 2 cells could be identified and 
removed from a battery with 13.0% of non-class-2 cells being 
removed. The training set's results corresponded fairly well 
to the test set's results, indicating that the neural network 
would probably apply in a general manner. However, these 
results are still not as good as those achieved in the three- 
class study. This is because roughly twice as many cells 
belong to the combined classes 1 and 3 as belong to class 2. 
The 13% of non-class-2 cells of neural network number 14 
(Table 6) is, in actual number of cells, larger than those 
indicated by the 15.8% in neural network number 7 (Table 
5). Thus the actual numbers of classifications and mis-clas- 
sifications should be considered when comparing results with 
Tables 5 attd 6. (The needed breakdowns are provided in 
Tables 7 and 8.) 

3.5. Single-class optimization within a three-class neural 
network classifier 

Another strategy was explored to maximize the classifi- 
cation accuracies. The approach taken was to create neural 
networks which specialized in classifying one class. The neu- 
ral network would concentrate on achieving the highest clas- 
sification accuracy for one class at a time with the fewest 
number of false positives from the other two classes. The 
classification accuracy of the other two classes relative to one 

Table 6 
Confusion matrices (percent classified) and overall percent classification accuracies for 2-class neural network test and training sets: class 2 versus classes l 
and3 a 

NN ID b PC c Test set Training set 
Confusion matrix (%) Confusion matrix (%) 
True class True class 

2 I and 3 OCA ~ 2 I and 3 OCA d 

13 2 79.5 8.9 87. I 76.7 12. I 84. ! 
I & 3 20.5 91.3 23.3 87.8 

14 2 92.3 13.0 88,7 90.5 18.2 85.2 
I & 3 7.7 8"7.0 9.5 81.8 

"Neural network parameters: (I'~) 18000 training cycles, epoch = 15, [ - I, + 1 ] input scaling; (14) 20565 training cycles, epoch = 15, [ - 0,8, +0.8] input 
scaling. 
~' NN ID: Neural network identification. 
c PC: Neural aetwork predicted class. 
o OCA: Overall classification accuracy. 
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Table 7 
Origin and number of cells forming the combined an6 randomized training set 

131 

Capacity test event Number of class I cells Number of class 2 cells Number of class 3 cells 

March 1989 13 7 15 
April 1990 12 20 15 
September 1991 26 39 35 
Combined/randomized training set 51 66 65 

Table 8 
Origin and number of cells forming the combined and randomized test set 

Capacity test event Number of c:ass i cells Number of class 2 cells Number of class 3 cells 

March 1989 4 8 3 
April 1990 5 4 6 
September 1991 I l I ! 10 
Combined/randomized test set 20 23 19 

Table 9 
Confusion matrices (percent classified), overall percent classification accuracies for case i neural network test and training sets" 

NN ID i, PC c Test set Traiqing set 
Confusion matrix (%) Confusion mauix (%) 
True class True class 

Class I Class 2 Class 3 OCA d Class I Class 2 Class 3 OCA a 

15 I 70.0 0.0 0.0 75.8 66.7 1.5 i 0.8 73. ! 
2 5.0 82.6 26.3 0.0 83.3 23.1 
3 20.0 17.4 73.7 33.3 12.1 64.6 

16 I 75.0 0.0 5.3 74.2 78.4 4.5 13.8 73.6 
2 5.0 78.3 21. I 0.0 84.8 27.7 
3 20.0 21.7 68.4 21.6 10.6 58.5 

17 I 80.0 4.4 5.3 67.7 94.1 4.6 15.~t 72.0 
2 10.0 69.6 42.1 0.0 74.2 32.3 
3 10.0 26. I 52.6 5.9 21.2 52.3 

18 I 90.0 4.4 2 I. I 77.4 90.2 9. ! 36.9 68.1 
2 0.0 82.6 2 I. 1 0.0 80.3 24.6 
3 10.0 13.0 57.9 9.8 10.6 38.5 

19 ! 95.0 4A 31.6 72.6 98.0 4.6 49.2 68. ! 
2 0.0 73.9 2 I. I 0.0 89A 27.7 
3 :5,0 21.7 47.4 2.0 6.1 23. I 

20 c ! 100 8.7 31.6 80.6 100 9.1 49.2 68.1 
2 0 87.0 15.8 0 83.3 23.1 
3 0 4.4 52.6 0 7.6 27.7 

• Neural network parameters: (15) 15600 training cycles, epoch = 40, [ - I, + ! ] input scaling; (16) 15600 training cycles, epoch = 35, [ - 1, + ! ] input 
scaling; (17) 17800 training cycles, epoch = 20, [ - 1, + I ] input scaling: (18) 12300 training cycles, epoch = 25, [ - I.l, + !.11 input scaling, (19) 8600 
training cycles, epoch = 20. [ - I, + I ] input scaling, input nodes 41 and 43 not fed into first hidden layer: (20) 9300 :raining cycles, epoch = 25, [ - 0.9. + 0.9] 
input scaling. 
u NN ID: Neural network idemification. 
c PC: Neural network predicted class. 
d OCA: Overall classification accuracy. 
, This neural network is identical to neural network ? in Table 5. 

ano the r  w o u l d  be  inconsequent ia l .  H o w e v e r ,  s ince  the goal  
o f  this  inves t iga t ion  w a s  to e l iminate  l ow  capaci ty  cells  ( c lass  
2 ) and  accura te ly  separa te  ou t  h igh  capaci ty  cells  ( c lass  1 ) ,  

c lass  3 w a s  no t  o f  impor t ance  excep t  as  a source  o f  false 

pos i t ives  fo r  c lass  1. The  technique  was  used  wi th  s o m e  

succes s  by  Li  [ ! 3 ] in he r  classif icat ion s tudy for  this  bat tery 

u s ing  ma in t enance  even t s  in connec t ion  wi th  the fabricat ion 

data  ( s ee  Tab le  1 ) .  

The  classif icat ion p r o b l e m  w a s  b roken  up  into t w o  cases .  
The  case  1 objec t ives  were  to m a x i m i z e  c lass  I c lassif icat ion 
accuracy  but  min imize  the n u m b e r  o f  false pos i t ives  f r o m  

c lasses  2 and 3. The  case  2 objec t ives  were  to maxim,~ze c lass  

2 classif icat ion accuracy  but  m i n i m i z e  the  n u m b e r  o f  c lass  2 

cells  identified as  c lass  i ,  and  c lasses  I and  3 cel ls  identified 

as  c lass  2. In this w o r k  these  objec t ives  were  accompl i shed  

by  ope ra to r  superv i s ion  o f  the t ra ining o f  d i f ferent  neural  
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Table 10 
Confusion matrices (percent classified ), overall percent classification accuracies for case 2 neural network test and training sets a 

NNID ~ PC~ Test set Training set 
Confusion matrix (%) Confusion matrix (%) 
True class True class 

Class 1 Class 2 Class 3 OCA '~ Class I Class 2 Class 3 OCA a 

21 1 60.0 0.0 i 0.5 74.2 76.5 1.5 ! 8.5 73. I 
2 0.0 87.0 15.8 0.0 86.4 24.6 
3 40.0 13.0 73.7 23.5 ! 2. I 56.9 

7.2 I 70.0 0.0 15.8 75.8 80.4 3.0 20.0 74.2 
2 0.0 91.3 21.1 0.0 84.8 21.5 
3 30.0 8.7 63.2 19.6 12. I 58.5 

23 I 75.0 0.0 2 I. 1 77.4 88.2 3.0 27.7 72.0 
2 0.0 95.7 2 !. I 0.0 84.9 26.2 
3 25.0 4.4 57.9 ! 1.8 12. i 46.2 

a Neural network parameters: (21) 9400 training cycles, epoch = 70, [ - 1, + I ] input scaling; (22) 15720 training cycles, epoch = 125, [ - 1, + I ] input 
sealing; (23) 14900 training cycles, epoch = 20, l - 0.95, + 0.95 ] input sealing. 
t, NN ID: Neural network identification. 
c PC: Neural network predicted class. 
a OCA: overall classification accuracy. 

networks. Those most suitable for each of  the objectives 
above were selected out for further study. 

Table 9 presents a graduation of neural networks for case 
1 ranked in order of increasing tolerance for mis-classifica- 
tions of  class 2 and 3 cells. That is, a neural network with the 
ability to identify a larger number of the high performance 
cells would require a tolerance for a larger portion of lower 
performing cells to be included. Examination of the confusion 
matrices for neural network 17 shows the highest consistency 
between the training and test sets. Hence, neural network 17, 
among all of  those in Table 9, could probably be deployed in 
the real world with the most overall confidence. However, if 
a high tolerance for class 3 cells was acceptable (to such a 
degree that you may have more class 3 cells than your neural 
network indicates) then neural networks 19 and 20 could be 
deployed with confidence since the classification accuracies 
for all but class 3 correspond well in both the traini~:,,o and 
test sets. 

Table 10 presents the best neural networks specializing in 
case 2. Based on the how well the confusion matrices corre- 
spond in both the training and test sets, neural network 21 
seems the best choice to be deployed with the mostconfidence 
in the real world. Although neural networks 22 and 23 both 
have higher test set classification accuracies for class 2, the 
corresponding training set class 2 classification accuracies do 
not match well. However, neural networks 22 and 23 show 
great potential for becoming optimum solutions for the case 
2 problem. 

In an attempt to identify a consistent set of high performing 
cells, those cells identified as class 2 (by class 2 specialist 
neural network 23) were first removed from the test set, and 
the remaining cells were classified by the class ! specialist 
neural network 20. The resulting 'enhanced'  confusion 
matrix (shown below) illustrates a significant improvement 

by diminishing the number of class 2 cells mis-classified as 
class 1. 

Enhanced confusion matrix (%), neural nets Nos. 20 and 23 

Predicted class True class 

Class I Class 2 Class 3 

I 100 4.3 31.6 
2 0.0 95.7 2 I. I 
3 0.0 0.0 47.4 

3.6. Interpreting the neural  ne twork  

A major disadvantage that neural networks have, which 
many multi-variate statistical techniques do not, is interpre- 
tation. In least-squares analysis, for example, the slope, inter- 
cept, and sign of the correlation coefficient may all have 
interpretative significance. However, for a neural network, 
the interpretative significance of the interconnections 
between nodes and the associated matrix of weights is quite 
abstract and difficult to explain [36].  However, various 
aspects of the nature of the input data can be inferred based 
on what parameters optimized the neural network's 
performance. 

The reason that various features proved more useful than 
others is believed to lie in the quality of  the data from each 
maintenance task. The float voltages were obtained by well 
trained technicians under supervision. The specific gravity 
readings were obtained with a rugged and standardized tech- 
nique using a hydrometer. The water added task was not 
recorded as accurately as the float voltages or the specific 
gravities. Chen ~ d  co-workers [ 10,12] found that features 
derived from the water added task may potentially be most 
significan: because it reflected the total activity of the cell. 
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Thus, despite the lower quality of the water added records, 
its cell performance information content is demonstrated by 
its being the generator of several of the thirteen features in 
the selected feature set (see above, Preliminary Investigation 
section). The electrolyte level readings did not have the pre- 
cision and consistency as the other maintenance data, and 
thus may not provide as fine an indicator as needed by a study 
of this type. 

For neural networks, training data appear to resonate at 
particular epochs. Training with the wrong epoch size can 
inhibit convergence to an optimum solution. For example, 
training with too small of an epoch may cause oscillations in 
the weights. Training with too large of an epoch may cause 
subtle trends to be lost [ 37 ]. Overall best performance tended 
to occur with epochs between 15 to 65 training cycles. How- 
ever, in the specialist neural networks in which a single class 
was optimized within a three-class classifier, the best class 1 
classifiers had short epochs and the best class 2 classifiers had 
long epochs (compare Tables 9 and 10). This indicates that 
subtle trends in the features may be key to correctly classi- 
fying the high performing cells. On the other hand, overall 
trends in the features seem to contain information related to 
classifying poor performing cells. 

Beyond any preprocessing the user does to the data, the 
neural network does a linear mapping of the input data within 
user specified ranges. Ranges such as [0, i ] or [ -  1, 1 ] are 
typical. This mapping allows the network to work with num- 
bers that are within the ranges compatible with the summation 
and transfer functions of the processing elements. When the 
inputs are scaled between zero and one the average is 0.5. 
This type of scaling enhances the effects of average input 
behavior. A scaling between - I and + ! provides an average 
of zero. This type of scaling enhances the effects of deviant 
input behavior [38]. In all cases, while holding all other 
variables constant, the input scaling in the [ - 1, + i ] form 
provided better performing neural networks than when the 
data was scaled in the [0, 1] range. Typically the [0, 1] 
scaled inputs had more class 2 cells mis-classified as class 1 
and consistently produced lower overall classification accu- 
racies. The implication of this is that the deviant behavior in 
the features is more significant for determining cell perform- 
ance than is the average behavior. 

4 .  C o n c l u s i o n s  

The results achieved in this study using neural network 
analysis of time-indexed maintenance events are a major 
advancement over what had been accomplished in the pre- 
vious studies of the GNB battery. The maximum overall 
prediction accuracy achieved in this study was 80.6% (see 
neural network 7 in Table 5 or neural network 20 in Table 
9). The maximum class-specific prediction accuracies 
achieved were 100% for class ! (neural network 7 or 20) 
and 95.7% for class 2 (neural networks 2, 4, and 23). Neural 
networks optimized for class 3 were not investigated though 

73.7% was achieved by two neural networks presented (15 
and 21). 

The class-specific prediction results obtained with neural 
network analysis of maintenance data can be compared 
directly with Li 's  results [ 13 ] using KNN pattern recognition 
analysis of combined fabrication and maintenance data, sum- 
marized in Table 1. A comparison of the best class-specific 
prediction results for both studies is presented in Table 11. 
From this summary it is clear that both studies have achieved 
practical levels of prediction, but the neural network predic- 
tion results are somewhat better. For class-l-specific wedic- 
tion it was possible to select 70% of the high-performing 
cells, without any false selections from the low-performing 
cells (using neural net 15 ). For class-2-specific prediction, it 
was possible to select 95.7% of the poor-performance cells, 
with 21.1% of class 3 (intermediate) cells mis-selected, but 
with none of the class i (high-performance) cells mis- 
selected. By comparison, Li 's results showed it was possible 
to select 50% of the high-performing cells, hut with 6.7% 
mis-selected from lower-performing cells. Only 84.6% of the 
class 2 cells could be selected, but with only 10% of classes 
1 and 3 cells mis-selected. 

To assess the impact of these results on the practical maw 
agement of a battery energy storage facility, consider the 
value of being able to select a subset of cells which will be 
among the highest performing cells, with a low to zero prob- 
ability that lower-performing cells will be selected. Perhaps 
even more important would be the ability to identify nearly 
96% of those cells which will perform poorly. It would be 
beneficial to rotate in fresh cells, reducing the potential for 
cell reversals. The cells removed could be scrutinized off- 

Table I ! 
Best class-specific prediction results. Maintenance features ( ANN analysis) 
and combination features (KNN pattern recognition) [ 13] 

a) Class I 
Source Class I cells Cells mis-selected 

(selected %) (% of classes 2 and 3) 

ANN 
Maintenance features, 
(NNI5, Table 9) 

KNN 
Combined features 
( Table I ) 

b ) Class 2 
Source 

70.0 0.0 

59.0 6.7 

Class 2 cells 
(selected %) 

Cells mis-selecred 
(% of classes I and 3) 

ANN 
Maintenance features 
(NN23. Table 10) 

KNN 
Combined features 
(Table I ) 

95.7 21.1" 

84.6 10.0 

• No cl.'tcs ! cells mis-selected. 
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line to identify those intermediate cells which can have con- 
tinued on-l ine utilization. 

For  long strings o f  cells, such as the GNB battery evaluated 
in this study, the economic  benefit  o f  using routine mainte- 
nance events  to predict  cell performance is very attractive. 
Conduct ing capacity tests on a large battery, such as the GNB 
battery, is expensive  and disruptive. The results presented 
here indica,.e the teasibiitty o f  the routine application o f  neural 
networks for performance prediction as part o f  a maintenance 
strategy for long-str ing energy storage systems. 
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